.NET Core开发日志——配置
熟悉ASP.NET的开发者一定对web.config文件不陌生。在ASP.NET环境中,要想添加配置参数,一般也都会在此文件中操作。其中最常用的莫过于AppSettings与ConnectionStrings两项。而要在代码中获得文件中的配置信息,ConfigurationManager则是必不可少需要引入的程序集。然而到了ASP.NET Core时代,存储与读取配置的方式都发生了改变。如果对ASP.NET Core项目有所了解的话,应该会看到过appsettings.json这个文件。这里就从JSON文件配置方式开始解释ASP.NET Core中是如何读取配置信息的。假设有预先设置的appsettings.json文件:{ "option1": "value1_from_json"quot;option1 = {Configuration["Option1"]}");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;option2 = {Configuration["option2"]}");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;suboption1 = {Configuration["subsection:suboption1"]}");
Console.WriteLine();
Console.WriteLine("Wizards:");
Console.Write(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;{Configuration["wizards:0:Name"]}, ");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;age {Configuration["wizards:0:Age"]}");
Console.Write(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;{Configuration["wizards:1:Name"]}, ");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;age {Configuration["wizards:1:Age"]}");
Console.WriteLine();
Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
首先,实例化一个ConfigurationBuilder对象,接着设置基础路径。
SetBasePath的操作其实是在ConfigurationBuilder的属性字典里设置FileProvider的值。
public static IConfigurationBuilder SetBasePath(this IConfigurationBuilder builder, string basePath){
...
return builder.SetFileProvider(new PhysicalFileProvider(basePath));
}public static IConfigurationBuilder SetFileProvider(this IConfigurationBuilder builder, IFileProvider fileProvider){
...
builder.Properties[FileProviderKey] = fileProvider ?? throw new ArgumentNullException(nameof(fileProvider)); return builder;
}
然后是添加JSON文件。
public static IConfigurationBuilder AddJsonFile(this IConfigurationBuilder builder, IFileProvider provider, string path, bool optional, bool reloadOnChange){
... return builder.AddJsonFile(s =>
{
s.FileProvider = provider;
s.Path = path;
s.Optional = optional;
s.ReloadOnChange = reloadOnChange;
s.ResolveFileProvider();
});
}public static IConfigurationBuilder AddJsonFile(this IConfigurationBuilder builder, Action<JsonConfigurationSource> configureSource) => builder.Add(configureSource);
ConfigurationBuilder里添加了一个JsonConfigurationSource对象。
最后,执行ConfigurationBuilder的Build方法,就可以得到保存配置信息的Configuration对象。
总结例子中的代码,获取配置信息的操作其实就分为两步:
生成Configuration对象
按键值从Configuration对象中获取信息
生成Configuration对象的步骤至少要有三个基础环节。
生成ConfigurationBuilder对象
添加ConfigurationSource对象
创建Configuration对象
查看创建Configuration对象的代码,会发现内部利用的其实是ConfigurationSource中创建的ConfigurationProvider对象。
public IConfigurationRoot Build(){ var providers = new List<IConfigurationProvider>(); foreach (var source in Sources)
{ var provider = source.Build(this);
providers.Add(provider);
} return new ConfigurationRoot(providers);
}
再看IConfiguratonSource接口,也只有一个Build方法。
public interface IConfigurationSource{ IConfigurationProvider Build(IConfigurationBuilder builder);
}
最终创建的Configuration对象,即ConfigurationRoot中包含了所有的ConfigurationProvider,说明配置信息都由这些ConfigurationProvider所提供。
跟踪至ConfigurationRoot类型的构造方法,果然在其生成对象时,对所有ConfigurationProvider进行了加载操作。
public ConfigurationRoot(IList<IConfigurationProvider> providers){
...
_providers = providers; foreach (var p in providers)
{
p.Load();
ChangeToken.OnChange(() => p.GetReloadToken(), () => RaiseChanged());
}
}
比如JsonConfigurationProvider中:
public override void Load(Stream stream){ try
{
Data = JsonConfigurationFileParser.Parse(stream);
}
...
}
通过JSON解析器,将JSON文件的配置信息读取至ConfigurationProvider的Data属性中。这个属性即是用于保存所有配置信息。
/// <summary>
/// The configuration key value pairs for this provider.
/// </summary>
protected IDictionary<string, string> Data { get; set; }
有了ConfigurationRoot对象后,获取配置信息的操作就很简单了。遍历各个ConfigurationProvider,从中获取第一个匹配键值的数据。
public string this[string key]
{ get
{ foreach (var provider in _providers.Reverse())
{ string value; if (provider.TryGet(key, out value))
{ return value;
}
} return null;
}
...
}
ConfigurationProvider对象从Data属性获取配置的值。
public virtual bool TryGet(string key, out string value) => Data.TryGetValue(key, out value);
在最初的例子中可以看Configuration["wizards:0:Name"]
这样的写法,这是因为在Load文件时,存储的方式就是用:
为分隔符,以作为嵌套对象的键值。
也可以用另一种方法来写,将配置信息绑定为对象。
先定义对象类型:
public class AppSettings{ public string Option1 { get; set; } public int Option2 { get; set; } public Subsection Subsection { get; set; } public IList<Wizards> Wizards { get; set; }
}public class Subsection{ public string Suboption1 { get; set; }
}public class Wizards{ public string Name { get; set; } public string Age { get; set; }
}
再绑定对象:
static void Main(string[] args){ var builder = new ConfigurationBuilder()
.SetBasePath(Directory.GetCurrentDirectory())
.AddJsonFile("appsettings.json");
Configuration = builder.Build(); var appConfig = new AppSettings();
Configuration.Bind(appConfig);
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;option1 = {appConfig.Option1}");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;option2 = {appConfig.Option2}");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;suboption1 = {appConfig.Subsection.Suboption1}");
Console.WriteLine();
Console.WriteLine("Wizards:");
Console.Write(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;{appConfig.Wizards[0].Name}, ");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;age {appConfig.Wizards[0].Age}");
Console.Write(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;{appConfig.Wizards[1].Name}, ");
Console.WriteLine(
1.1. 名词解释
内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序。
用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取。
1.2. Kestrel基本工作原理
Kestrel是进程内服务器,以一个包形式提供,自身不能单独运行,必须HOST在一个.NET的WEB应用程序中。它内部封装了对libuv的调用,但不是libuv库简单的封装库。Kestrel是个精简的,高效的Http Server。
1.2.1. Kestrel的基本架构
Kestrel遵循以下架构原则:
对应的架构图如下:
Libuv
作为I/O底层,屏蔽各系统底层实现差异,为windows下,通过IOCP实现异步;linux下通过epoll实现异步。提供一个主程序和主循环。
I/O事件队列
对应Libuv的工作队列,为了利用现代服务器的多核处理器,适当的队列数量将提高更大的I/O吞吐能力。Kestrel默认为每两个CPU核心设置一个I/O事件队列,但至少有一个I/O事件队列。每个队列对应一个托管线程,该线程不属于线程池。用户可以设置队列个数,通过设置KestrelServerOptions.ThreadCount即可,最多设置16个。
Kestrel线程
事件队列对应的托管线程,主要控制读取事件的循环机制:每次事件循环处理8个事件,然后等待下一次循环。
非托管内存池
这是在.net运行环境分配的非托管内存池,申请的比较大块的堆内存,仅在首次请求或者池剩余空间不足时分配,后续请求可以复用,不受GC管理。内存被分为n片,每片大小是128K,每页大小4k,管理内存页的数据结构采用链表方式。以获取大块连续空间的方式增长。遵循读完后立即释放的处理原则。
TCP监听器
这个监听器不同于套接字的监听器,而是Libuv的Socket类型的连接事件监听器。监听TCP连接事件,对每一个TCP请求产生一个连接对象。连接对象包括暂停,继续,终止。
连接管理
负责异步结束连接对象。
HTTP协议模块
该模块包括HTTP帧的创建工厂,工厂在监听器监听到一个连接时产生一个HTTP帧。一个HTTP帧处理一次HTTP请求和返回。
更为详细的结构视图如下:
1.2.2. Kestrel的工作原理
1.2.2.1. 处理Request和Response
按照请求流转方向会有以下处理过程:
1. 请求进入libuv
将请求事件放入事件队列,随后的事件循环中,监听器回调函数执行。
2. 监听器创建连接
根据请求信息创建一个连接对象,此时Http帧工厂被调用,产生一个Http帧对象;用于读取Request的SocketInput、用于返回Response的SocketOutput对象被创建,二者会被Http帧使用。
3. 连接管理监控连接
连接管理器跟踪连接的状态,收集待关闭连接,然后异步关闭。
4. Http帧处理
一个Http负责构建Http上下文的Request对象和Response对象。读取Request数据和返回Response数据都要经过内存池。高效的内存读写和与和Libuv的读写事件协调,确保Request数据到达就能读到内存池,到达内存池就能及时被读;Response数据写入内存池就能被套接字及时发出去,体现了Kestreld强大的异步处理能力。
1.2.2.2. 内存池读写
读取内存池数据时可读取后续到达的数据,不需要重新等待事件,此时对应读取Request数据情形:
写数据到内存池时,libuv连续读出并发送数据,也不需要重新等待时间,此时对应发送Response数据情形:
1.2.2.3. Libuv线程和托管线程通信
二者的通信机制保证Libuv线程永远不会被阻塞:比如libuv线程在通知事件时会很小心尝试获取队线程私有锁,如果成功获取就这在事件队列线程上异步处理,否则这一通信过程在线程池里重复执行直到成功,如图:
1.3. Http.sys基本工作原理
1.3.1. Http.sys基本构成
1. 监听器
监听TCP请求,允许端口共享。TCP携带的HTTP报文会被Http Parser解析,名称映射首先会根据url确定对应的web app,然后把请求放入该app的消息队列中。
2. 消息队列
Http.sys给每个注册的web app一个消息队列。
3. 响应缓存
请求的静态资源和GET请求会缓存起来一段时间,如果请求url能匹配这直接返回缓存数据。
4. 响应模块
将数据返回给用户代理,如果返回的是可以缓存的资源,则会放入响应缓存中。
1.3.2. Http.sys工作原理
下图表示在ASP.NET Core应用中接受一个http请求到返回数据的过程:
这里的TCPIP.sys也是windows内核驱动,提供了TCPIP协议栈。
Http.sys的处理如在“基本构成”做所述。
ASP.NET Core应用程序里面HttpSys模块代表了Http.sys,它与应用程序代码交流,交流的载体是HTTP上下文。
1.3.3. 总结
Kestrel服务器运行在Asp.net core应用程序中,能高效的处理网络请求,且跨平台。Http.sys运行在内核态中,极大减少了系统调用次数,运行效率很高;自带生存环境的安全,鲁棒性等特点;它也可以作为反向代理,因此它的功能更加强大,主要问题是只能运行在windows下。Kestrel应用在生产环境中需要运行在代理服务器后面,以获取安全性,负载均衡等能力。
平台支持 | Windows | Windows/Linux/Mac |
静态文件 | Yes | Yes |
HTTP访问日志 | Yes | No |
端口共享/多应用程序 | Yes | No |
SSL证书 | Yes | Internal* |
Windows 授权 | Yes | No |
过滤请求&限制 | Yes | No |
IP&域名约束 | Yes | No |
HTTP重定向规则 | Yes | No |
WebSocket 协议 | Yes | Middleware |
缓存Response | Yes | No |
压缩 | Yes | Yes |
FTP服务器 | Yes | No |
运行态 | 内核态 | 用户态 |
* Internal:https通信仅仅工作在反向代理服务器后面与ASP.NET程序之间,如果要想外暴露https服务这需要用到反向代理,比如IIS,nginx,apached。
参考文章
http://www.cnblogs.com/yxmx/articles/1652128.html
http://www.cnblogs.com/arbin98/archive/2010/09/03/1816847.html
https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/
quot;age {appConfig.Wizards[1].Age}");
Console.WriteLine();
Console.WriteLine("Press a key...");
Console.ReadKey();
}
写法变成了常见的对象调用属性方式,但结果是一样的。
除了可以用JSON文件存储配置信息外,ASP.NET Core同时也支持INI与XML文件。当然有其它类型文件时,也可以通过实现IConfigurationSource
接口并继承ConfigurationProvider
类建立自定义的ConfigrationProvider对象来加载配置文件。
至于文件以外的方式,ASP.NET Core也提供了不少。
命令行,AddCommandLine
环境变量,AddEnvironmentVariables
内存, AddInMemoryCollection
用户机密,AddUserSecrets
Azure Key Vault,AddAzureKeyVault
选择何种存储与读取配置的方法取决于实际场景,ASP.NET Core已经开放了配置方面的入口,任何接入方式理论上都是可行的。实践方面,则需要开发者们不断去尝试与探索。
,220)/}
配置,日志,开发,